Syllabus Gyanmanjari Institute of Technology Semester-1 Subject: Basics of Electronics Engineering: Concepts and Applications - BET1EE11301 Type of course: Major (Core) Prerequisite: Basic knowledge of Physics and Mathematics. Rationale: The course is designed to provide Elementary concepts of Electronics Engineering to engineering students. Electronics is the cornerstone of modern technology, playing a vital role in nearly every aspect of contemporary life—from communication systems, healthcare, and transportation to entertainment, industry, and automation. A deep understanding of electronics is essential for students, engineers, and professionals who aspire to innovate and contribute effectively in the 21st-century technological landscape. Without it, modern civilization as we know it would be impossible. # Teaching and Examination Scheme: | Teaching Scheme | | Credits | Examination Marks | | Total Marks | | |-----------------|---|---------|--------------------------|-----|-------------|-----| | CI | T | P | C | SEE | CCE | | | 2 | 0 | 4 | 4 | 100 | 50 | 150 | Legends: CI-Class Room Instructions; T – Tutorial; P - Practical; C – Credit; SEE - Semester End Evaluation; LWA - Lab Work Assessment; V – Viva voce; CCE-Continuous and Comprehensive Evaluation; ALA-Active Learning Activities. #### **Course Content:** | Sr.
No | Course Content | Hrs. | %
Weightage | |-----------|--|--------------|----------------| | 1 | Semiconductor Diodes and Rectifiers Topics: Semiconductor basics (P-type, N-type) PN Junction diode and its characteristics. Diode Equivalent Circuit Zener diode Light Emitting Diode Sinusoidal Inputs: Half-Wave Rectification | T:08
P:12 | 25% | Basics of Electronics Engineering: Concepts and Applications - BET1EE11301 | 31 | T 11 | D | | |----|-----------|---------|--------| | • | Full-wave | Rectifi | cation | - ClipperClamperPractical | Sr.
No. | Practical Task | Tools Used | Outcome | |------------|---|--|--| | 1 | Plot the V-I
characteristics of a PN
junction diode | kit
+Multimeter | Understand the diode's behavior in forward and reverse bias by plotting its V-I characteristics. | | 2 | Verify characteristics of a
Zener diode for Forward
and Reverse Bais
condition | kit
+Multimeter
Multisim
Software /
LT spice | Analyze the reverse breakdown region of a Zener diode through its V-I characteristics. | | 3 | Zener diode as a voltage regulator | kit
+Multimeter
Multisim
Software /
LT spice | Demonstrate the use of a Zener diode to maintain a constant output voltage despite load or input changes. | | 1 | To demonstrate how LED works in a simple circuit. | Kit
+Multimeter
Multisim
Software /
LT spice | Apply knowledge of circuit fundamentals to build and test an LED circuit using resistors and a power supply. | | | Half-wave rectifier using a diode | kit
+Multimeter
Multisim
Software /
LT spice | Observe the conversion of an AC input into a pulsating DC output using a single diode. | | 6 | Full-wave rectifier | | kit
+Multi
Multisi
Softwa
LT spic | im
re / | Verify the full-wave rectification of an AC signal to improve efficiency. | | | |------------|---|---------------|---|----------------|---|--------------|-----| | Eval | uation Method | | | | | 1 | | | Sr.
No. | Evaluation
Component | SEE
(Marks | | CCE
(Marks) | Description | | | | 1 | Circuit Assembly
and connection on
Software | 10 | | - | Students will design and simulate a given circuit and verify output. | | | | 2 | Problem-solving on zener diode. | 05 | | | Students will
solve problem
based on Zener
as Regulator
depending on a
given condition | | | | 2 | Active Learning Activity (Component Identification) | - | 0 | 05 | Identify the given component and read its values. | | | | 3 | Performance comparison of Rectifiers. | | 0 | 5 | Students will
compare
different type of
Rectifier and
upload Report
on GMIU web
Portal. | | | | | Total | 15 | 1 | 0 | | | | | ipol | o
ar junction transi | stors | | | | | | | opics | | on(NPN | | | t-off | T:07
P:12 | 15% | Basics of Electronics Engineering: Concepts and Applications - BET1EE11301 - Common-Base Configuration - Common-Collector Configuration - Common-Emitter Configuration - BJT as an amplifier and switch ## Practical | Sr.
No. | Practical Task | Tools Used | Outcome | |------------|--|------------------------------------|--| | 1 | Identify the terminals of the BJT using the datasheet and a multimeter | Multimeter
+
Datasheets | Learn BJT pin configuration and types | | 2 | Plot the input/output
characteristics of the BJT in
the CB configuration | Virtual Lab | Analyze the input-output relationship of BJT | | 3 | Plot the input/output
characteristics of the BJT in
the CE configuration | Virtual Lab | Analyze the input-output relationship of BJT | | 4 | Verify the transistor as a switch | Multisim
Software
& LT spice | Observe
transistors as a
Switch. | | 5 | Set up the transistor amplifier circuit | Virtual Lab | Observe signal amplification | # **Evaluation Method** | Sr.
No. | Evaluation
Component | SEE
(Marks) | CCE
(Marks) | Description | | |------------|---|----------------|----------------|---|--| | 1 | Problem -
solving | 100000 | | Numerical, based or
BJT operation,
modes, and
amplifier design | | | 2 | Active Learning Activities (Judge and Draw) | | 10 | The clue will be given to the students, the Judge, and the circuit will be drawn in a group | | Basics of Electronics Engineering: Concepts and Applications - BET1EE11301 WNOVAT | | | | | | of 3 or 4, and
upload it to t
GMIU Web I | he | | | |------------|--|-----------------|------------|----------------------|---|------|--------------|-----| | | Total | 10 | | 10 | | | | | | Topi | Construction and Constr | Characteristics | | cs of FET | | | T:07
P:12 | 20% | | Sr.
No. | Practical Task | M | T | ools Used | Outcome | | | | | 1 | Study MOSFET as switch | a | 1 | roteus or
ultisim | Learn the swit
behavior; ON/
control via gat
voltage | OFF | | | | 2 | Simulate FET characteristics | ** | | oteus or
ultisim | Virtual observa
of JFET/MOSI
behavior; reinf
theory with
simulation | FET | | | | 3 | Design and simulate
JFET amplifier | e a | F-7-1100 | oteus or
ultisim | Observe amplitoutput. | fied | | | | 4. | Simulate an application-based ci | rcuit | 1 13 13 13 | oteus / | Apply Knowled
a simple applica | | | | | valu | ation Method | | | | | | | | | Sr.
No. | Evaluation
Component | SEE
(Mark | ks) | CCE
(Marks) | Description | | | | | 1 | Designing of circuit in software tool | 10 | | - | Simulation Fl
circuit Design
software tool | | | | | 2 | Active Learning Activities Component Hunt: Identify 5 real-world devices that use diodes, transistors, or MOSFETs (e.g., TV, inverter, charger).) | - | 5 | Understand the practical use of components and upload findings on the portal. | | | |-------------|---|----|---------------------------------|---|-----|--| | 3 | Viva Voce | _ | 5 | Oral questions | | | | | Total | 10 | 10 | | | | | | Inverting Amplifier
Non Inverting Ampl | | | | 1 1 | | | Prac
Sr. | op-amp Application. | | Tools Used | Outcome | | | | | op-amp Application. | | Tools Used Proteus or Multisim | Outcome Understand phase inversion and gain control. | | | | Sr. | op-amp Application. tical Practical Task op-amp in Inverting | | Proteus or | Understand phase inversion and gain | | | | Sr.
No. | op-amp Application. tical Practical Task op-amp in Inverting Mode op-amp in Non-Inverting | | Proteus or
Multisim | Understand phase inversion and gain control. Analyze signal amplification | | | Basics of Electronics Engineering: Concepts and Applications - BET1EE11301 Page 6 of 11 | 5 | Differentiator | Prote
Mult | eus or
tisim | Analyze rapid signal changes and output response. | | | |---------------|--|----------------|--|---|--------------|-----| | Eval | uation Method | | | | | | | Sr.
No. | Evaluation
Component | SEE
(Marks) | CCE
(Marks | Description | | | | 1 | Design a Specific
Function using
Op-amp | 10 | | Students research, design, simulate and then build and test their circuits and explain their results. | | | | 2 | Analyze the given circuit Parameter | 05 | | Students need to
find parameters
(like gain) of a
given circuit | | | | 3 | Quiz (MCQ –
Conceptual &
Circuit-based) | - | 05 | Questions on
Op-Amp basics | | | | 4 | Fault-Finder:
What's Wrong with
The Circuit? | | 05 | Students identify
the error, and
propose a
correct solution. | | | | | Total | 15 | 10 | | | | | Feed
Topic | back and Oscillato | r Circuit | | | T:08
P:12 | 20% | | Pract | Tuned Oscillator
Crystal oscillator | | | | | | | Sr.
No. | Practical Task | Tools Us | Carrier and Carrie | earning
utcome | | | Basics of Electronics Engineering: Concepts and Applications - BET1EE11301 Page 7 of 11 | 1 | To design, simulate, and analyze RC oscillators | Proteus or
Multisim | Design, simulate,
and analyze RC
oscillators in
Multisim. | |---|---|------------------------|--| | 2 | To simulate simple LC oscillators, | Proteus or
Multisim | Design, simulate,
and analyze LC
oscillators in
Multisim | | 3 | To simulate a crystal oscillator | Proteus or
Multisim | Perform crystal oscillator Analysis | # **Evaluation Method** | Sr.
No. | Evaluation
Component | SEE
(Marks) | CCE
(Marks) | Description | |------------|--|----------------|----------------|--| | 1 | Computational
Analysis of
Oscillator Circuits | 10 | - | Compute Parameters
of given Oscillator
and verify them
Through Simulation | | 2 | Performance
Prediction | | 5 | Simulation of any
Oscillator predicting
how an oscillator
will perform under
various operating
conditions
(temperature,
voltage, load). | | 3 | Comparison
between different
Types of
Feedback. | | 5 | Preparation of Poster | | | Total | 10 | 10 | | # Project # Objective To enhance practical understanding and design thinking by allowing students to apply fundamental electronics concepts in a real-world mini project. Students will build simple functional circuits, simulate operations, and present their ideas—developing teamwork, documentation, and problem-solving skills. ## **Evaluation Method** | Sr. No. | Evaluation
Component
Report | SEE
(Marks) | CCE
(Marks) | Description | | |---------|-----------------------------------|----------------|----------------|--|--| | 1 | | 5 | - | Submit a concise report covering circuit design, components used, working principle, and observations. | | | 2 | Presentation | 10 | - | Present the project idea, working logic and relevance through slides or a live demo. | | | 3 | Model
Working | 15 | - | Evaluate based on correct implementation, functionality, and simulation (if applicable). | | | 4 | Viva Voce | 10 | _ | Oral questions on circuit behavior, design logic, and individual contribution. | | Basics of Electronics Engineering: Concepts and Applications - BET1EE113 THOVATURE Rage 9 of 11 # **Suggested Specification Table with Marks:** | | Distribution of Marks (Revised Bloom's Taxonomy) | | | | | | | | |-------------|--|----------------------|-----------------|-------------|--------------|------------|--|--| | Level | Remembrance (R) | Understanding
(U) | Application (A) | Analyze (N) | Evaluate (E) | Create (C) | | | | Weightage % | 10% | 15% | 20% | 10% | 15% | 30% | | | Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the evaluation may vary slightly from the above table. #### **Course Outcome:** | After l | After learning the course, the students should be able to: | | | | | |---------|---|--|--|--|--| | CO1 | Analyze PN junction, Zener, and LEDs, their characteristics, equivalent circuits, and apply them in half-wave and full-wave rectification | | | | | | CO2 | Familiarize with NPN and PNP transistors, and analyze their behavior in common-base, common-emitter, and common-collector configurations for use as Switches and amplifiers | | | | | | CO3 | Illustrate the construction and characteristics of FETs, interpret their transfer characteristics, and differentiate between depletion and enhancement type MOSFETs for various electronic applications | | | | | | CO4 | Explore and evaluate the operation and applications of operational amplifiers. | | | | | | CO5 | Understand the concept of Feedback and oscillator circuitry. | | | | | ## **Instructional Method:** The course delivery method will depend on the requirements of the content and the needs of students. The teacher, in addition to the conventional teaching method by the blackboard, may also use any of the tools such as demonstration, role play, quizzes, brainstorming, MOOCs, etc. From the content, 10% of topics are suggested for flipped mode instruction. Students will utilize supplementary resources, including online videos, NPTEL/SWAYAM videos, e-courses, and Virtual Laboratories. The internal evaluation will be done on the basis of the CCE-Continuous and Comprehensive Evaluation. Basics of Electronics Engineering: Concepts and Applications - BET1EE11301 SEE: Semester End Evaluation will be conducted at the end of the semester for evaluation of the performance of students in the laboratory. #### Reference Books - [1] R. L. Boylestad and L. Nashelsky, Electronic Devices and Circuit Theory, 11th ed. Boston, MA, USA: Pearson Education, 2013. - [2] A. P. Malvino and D. J. Bates, Electronic Principles, 7th ed. New York, NY, USA: McGraw-Hill, 2007. - [3] R. A. Gaikwad, Op-Amps and Linear Integrated Circuits, 4th ed. New Delhi, India: PHI Learning Pvt. Ltd., 2013. - [4] R. S. Sedha, A Textbook of Applied Electronics, 3rd ed. New Delhi, India: S. Chand & Co., 2014. - [5] H. S. Kalsi, Electronic Instrumentation, 3rd ed. New Delhi, India: Tata McGraw-Hill, 2010.